Search results for " Fractional derivative"

showing 10 items of 11 documents

On the critical behavior for time-fractional pseudo-parabolic type equations with combined nonlinearities

2022

AbstractWe are concerned with the existence and nonexistence of global weak solutions for a certain class of time-fractional inhomogeneous pseudo-parabolic-type equations involving a nonlinearity of the form $|u|^{p}+\iota |\nabla u|^{q}$ | u | p + ι | ∇ u | q , where $p,q>1$ p , q > 1 , and $\iota \geq 0$ ι ≥ 0 is a constant. The cases $\iota =0$ ι = 0 and $\iota >0$ ι > 0 are discussed separately. For each case, the critical exponent in the Fujita sense is obtained. We point out two interesting phenomena. First, the obtained critical exponents are independent of the fractional orders of the time derivative. Secondly, in the case $\iota >0$ ι > 0 , we show that the gradie…

Algebra and Number TheoryCaputo fractional derivativecritical exponentSettore MAT/05 - Analisi Matematicapseudo-parabolic type equationglobal weak solutionAnalysiscombined nonlinearitie
researchProduct

Infinitely many solutions to boundary value problem for fractional differential equations

2018

Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.

Caputo fractional derivativeApplied Mathematics010102 general mathematicscritical pointAnalysiRiemann-Liouville fractional derivativeinfinitely many solution01 natural sciencesvariational method010101 applied mathematicsfractional differential equationApplied mathematicsBoundary value problem0101 mathematicsFractional differentialAnalysisMathematics
researchProduct

A fractional order theory of poroelasticity

2019

Abstract We introduce a time memory formalism in the flux-pressure constitutive relation, ruling the fluid diffusion phenomenon occurring in several classes of porous media. The resulting flux-pressure law is adopted into the Biot’s formulation of the poroelasticity problem. The time memory formalism, useful to capture non-Darcy behavior, is modeled by the Caputo’s fractional derivative. We show that the time-evolution of both the degree of settlement and the pressure field is strongly influenced by the order of Caputo’s fractional derivative. Also a numerical experiment aiming at simulating the confined compression test poroelasticity problem of a sand sample is performed. In such a case, …

Constitutive equationPoromechanics02 engineering and technology01 natural sciencesPressure fieldDarcy–Weisbach equationPhysics::Geophysics010305 fluids & plasmas0203 mechanical engineeringFractional operators0103 physical sciencesCaputo's fractional derivative; Fractional operators; PoroelasticityApplied mathematicsGeneral Materials ScienceCaputo's fractional derivative Fractional operators PoroelasticityCaputo's fractional derivativeCivil and Structural EngineeringMathematicsOrder theoryBiot numberMechanical EngineeringPoroelasticityCondensed Matter PhysicsFractional calculus020303 mechanical engineering & transportsMechanics of MaterialsFractional operatorSettore ICAR/08 - Scienza Delle CostruzioniPorous medium
researchProduct

Deterministic and Random Vibration of Linear Systems with Singular Parameter Matrices and Fractional Derivative Terms

2021

Both time- and frequency-domain solution techniques are developed for determining the response of linear multi-degree-of-freedom systems exhibiting singular parameter matrices and endowed with derivative terms of noninteger orders modeled as rational numbers. This is done based on the Moore-Penrose matrix inverse theory, in conjunction with a state variable formulation and with a complex modal analysis treatment. It is worth noting that, for the class of systems considered herein, this treatment also yields decoupled governing equations, thus facilitating further their numerical solution. Next, a generalization of the standard frequency-domain input-output (excitation-response) relationship…

Engineering dynamics Fractional derivative Moore-Penrose inverse Singular matrixMechanics of MaterialsMechanical EngineeringSingular matrixLinear systemApplied mathematicsRandom vibrationSettore ICAR/08 - Scienza Delle CostruzioniMoore–Penrose pseudoinverseMathematicsFractional calculusJournal of Engineering Mechanics
researchProduct

Finite element method on fractional visco-elastic frames

2016

Viscoelastic behavior is defined by fractional operators.Quasi static FEM analysis of frames with fractional constitutive law is performed.FEM solution is decoupled into a set of fractional Kelvin Voigt elements.Proposed approach could be easily integrated in existing FEM codes. In this study the Finite Element Method (FEM) on viscoelastic frames is presented. It is assumed that the Creep function of the constituent material is of power law type, as a consequence the local constitutive law is ruled by fractional operators. The Euler Bernoulli beam and the FEM for the frames are introduced. It is shown that the whole system is ruled by a set of coupled fractional differential equations. In q…

Finite element methodMechanical EngineeringConstitutive equationMathematical analysis02 engineering and technologyFunction (mathematics)Type (model theory)021001 nanoscience & nanotechnologyFractional calculuPower lawViscoelasticityFinite element methodComputer Science ApplicationsFractional calculus020303 mechanical engineering & transports0203 mechanical engineeringModeling and SimulationFractional viscoelasticityGeneral Materials Science0210 nano-technologySettore ICAR/08 - Scienza Delle CostruzioniQuasistatic processCaputo's fractional derivativeCivil and Structural EngineeringMathematics
researchProduct

Fractional differential calculus for 3D mechanically based non-local elasticity

2011

This paper aims to formulate the three-dimensional (3D) problem of non-local elasticity in terms of fractional differential operators. The non-local continuum is framed in the context of the mechanically based non-local elasticity established by the authors in a previous study; Non-local interactions are expressed in terms of central body forces depending on the relative displacement between non-adjacent volume elements as well as on the product of interacting volumes. The non-local, long-range interactions are assumed to be proportional to a power-law decaying function of the interaction distance. It is shown that, as far as an unbounded domain is considered, the elastic equilibrium proble…

Non-local elasticityCentral marchaud fractional derivativeComputer Networks and CommunicationsComputational MechanicsTime-scale calculusElasticity (physics)Non localFractional calculusLong-range interactionControl and Systems EngineeringCalculusFractional differentialSettore ICAR/08 - Scienza Delle CostruzioniFractional differential calculuFractional finite differenceMathematics
researchProduct

A mechanical picture of fractional-order Darcy equation

2015

Abstract In this paper the authors show that fractional-order force-flux relations are obtained considering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimensional fluid mass transport in an unbounded porous media with power-law variation of geometrical and physical properties yields a fractional-order relation among the ingoing flux and the applied pressure to the control section. As a power-law decay of the physical properties from the control section is considered, then the flux is related to a Caputo fractional derivative of the pressure of order 0 ⩽ β ≤ 1 . If, instead, the physical properties of the media show a power-law increase from the control sectio…

Numerical AnalysisAnomalous diffusionApplied MathematicsVolumetric fluxMass flowAnomalous diffusion; Anomalous scaling; Darcy equation; Fractional derivatives; Porous mediaMathematical analysisPorous mediaAnomalous diffusionFluxFractional derivativeViscous liquidDarcy–Weisbach equationFractional calculusModeling and SimulationDarcy equationSettore ICAR/08 - Scienza Delle CostruzioniPorous mediumAnomalous scalingMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Response of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitations: A Path Integral approach based on La…

2023

In this paper, an approximate analytical technique is developed for determining the non-stationary response amplitude probability density function (PDF) of nonlinear/hysteretic oscillators endowed with fractional element and subjected to evolutionary excitations. This is achieved by a novel formulation of the Path Integral (PI) approach. Specifically, a stochastic averaging/linearization treatment of the original fractional order governing equation of motion yields a first-order stochastic differential equation (SDE) for the oscillator response amplitude. Associated with this first-order SDE is the Chapman–Kolmogorov (CK) equation governing the evolution in time of the non-stationary respon…

Path Integral Laplace’s method of integration Evolutionary excitation Fractional derivativesNuclear Energy and EngineeringMechanical EngineeringAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsSettore ICAR/08 - Scienza Delle CostruzioniCondensed Matter PhysicsCivil and Structural EngineeringProbabilistic Engineering Mechanics
researchProduct

An exact thermodynamical model of power-law temperature time scaling

2016

In this paper a physical model for the anomalous temperature time evolution (decay) observed in complex thermodynamical system in presence of uniform heat source is provided. Measures involving temperatures T with power-law variation in time as T(t)∝tβ with β∈R shows a different evolution of the temperature time rate T(t) with respect to the temperature time-dependence T(t). Indeed the temperature evolution is a power-law increasing function whereas the temperature time rate is a power-law decreasing function of time. Such a behavior may be captured by a physical model that allows for a fast thermal energy diffusion close to the insulated location but must offer more resistance to the therm…

PhysicsAnomalous conductionDiffusion equationField (physics)business.industryPower-lawTime evolutionTemperature evolutionGeneral Physics and AstronomyAnomalous conduction; Fractional derivative; Fractional Transport; Power-law; Temperature evolution;Function (mathematics)Fractional derivative01 natural sciencesPower law010305 fluids & plasmasFractional Transport010101 applied mathematics0103 physical sciencesStatistical physics0101 mathematicsDiffusion (business)businessSettore ICAR/08 - Scienza Delle CostruzioniScalingThermal energy
researchProduct

Free energy and states of fractional-order hereditariness

2014

AbstractComplex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness.

Work (thermodynamics)Materials scienceMaterial stateFractional orderMaterial scienceSpectral lineDissipation rateMaterials Science(all)Modelling and SimulationGeneral Materials ScienceComplex materials; Continuous relaxation; Dissipation rates; Fractional derivatives; Fractional order; Free energy function; Material science; Power law creepFree energyPower-law creep/relaxationComplex materialbusiness.industryMechanical EngineeringApplied MathematicsRelaxation (NMR)Order (ring theory)Free energy functionFractional derivativesStructural engineeringFunction (mathematics)MechanicsFractional derivativeCondensed Matter PhysicsFractional calculusContinuous relaxationCreepMechanics of MaterialsModeling and SimulationPower law creepbusinessSettore ICAR/08 - Scienza Delle CostruzioniEnergy (signal processing)International Journal of Solids and Structures
researchProduct